In Drosophila, a hierarchy of maternal, gap, pair-rule, and segment polarity gene interactions regulates virtually simultaneous blastoderm segmentation. For the last decade, studies have focused on revealing the extent to which Drosophila segmentation mechanisms are conserved in other arthropods where segments are added sequentially from anterior to posterior in a cellular environment. Despite our increased knowledge of individual segmentation genes, details of their interactions in non-Drosophilid insects are not well understood. We analyzed the Tribolium orthologs of Drosophila pair-rule genes, which display pair-rule expression patterns. Tribolium castaneum paired (Tc-prd) and sloppy-paired Barbour Australia (Tc-slp) genes produced pair-rule phenotypes barbour Jacket when their transcripts were severely reduced by RNA interference. In contrast, similar analysis of T. castaneum even-skipped (Tc-eve), runt (Tc-run), or odd-skipped (Tc-odd) genes produced severely truncated, almost completely asegmental phenotypes. Analysis of interactions between pair-rule components revealed that Tc-eve, Tc-run, and Tc-odd form a three-gene circuit to regulate one another as well as their downstream targets, Tc-prd and barbour International Tc-slp. The complement of primary pair-rule genes in Tribolium differs from Drosophila in that it includes Tc-odd but not Tc-hairy. This gene circuit defines segments sequentially in double segment periodicity. Furthermore, this single mechanism functions in the early blastoderm stage and subsequently during germ-band elongation. barbour Sydney The periodicity of the Tribolium pair-rule gene interactions reveals components of the genetic hierarchy that are regulated in a repetitive circuit or clock-like mechanism. This pair-rule gene circuit provides insight into short-germ segmentation in Tribolium that may be more generally applicable to segmentation in other arthropods.